Annular Modes in the Extratropical Circulation. Part II: Trends*
نویسندگان
چکیده
The authors exploit the remarkable similarity between recent climate trends and the structure of the ‘‘annular modes’’ in the month-to-month variability (as described in a companion paper) to partition the trends into components linearly congruent with and linearly independent of the annular modes. The index of the Northern Hemisphere (NH) annular mode, referred to as the Arctic Oscillation (AO), has exhibited a trend toward the high index polarity over the past few decades. The largest and most significant trends are observed during the ‘‘active season’’ for stratospheric planetary wave–mean flow interaction, January– March (JFM), when fluctuations in the AO amplify with height into the lower stratosphere. For the periods of record considered, virtually all of the JFM geopotential height falls over the polar cap region and the strengthening of the subpolar westerlies from the surface to the lower stratosphere, ;50% of the JFM warming over the Eurasian continent, ;30% of the JFM warming over the NH as a whole, ;40% of the JFM stratospheric cooling over the polar cap region, and ;40% of the March total column ozone losses poleward of 408N are linearly congruent with month-to-month variations in the AO index. Summertime sea level pressure falls over the Arctic basin are suggestive of a year-round drift toward the positive polarity of the AO, but the evidence is less conclusive. Owing to the photochemical memory inherent in the ozone distribution, roughly half the ozone depletion during the NH summer months is linearly dependent on AO-related ozone losses incurred during the previous active season. Lower-tropospheric geopotential height falls over the Antarctic polar cap region are indicative of a drift toward the high index polarity of the Southern Hemisphere (SH) annular mode with no apparent seasonality. In contrast, the trend toward a cooling and strengthening of the SH stratospheric polar vortex peaks sharply during the stratosphere’s relatively short active season centered in November. The most pronounced SH ozone losses have occurred in September–October, one or two months prior to this active season. In both hemispheres, positive feedbacks involving ozone destruction, cooling, and a weakening of the wave-driven meridional circulation may be contributing to a delayed breakdown of the polar vortex and enhanced ozone losses during spring.
منابع مشابه
The Signature of the Annular Modes in the Tropical Troposphere
The extratropical annular modes are coupled with a distinct pattern of climate anomalies that spans the circulation of the tropical troposphere. The signature of the annular modes in the tropical troposphere exhibits a high degree of equatorial symmetry. It is associated with upper-tropospheric zonal wind anomalies centered about the equator, midtropospheric temperature anomalies located ;208N ...
متن کاملAnnular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability*
The leading modes of variability of the extratropical circulation in both hemispheres are characterized by deep, zonally symmetric or ‘‘annular’’ structures, with geopotential height perturbations of opposing signs in the polar cap region and in the surrounding zonal ring centered near 458 latitude. The structure and dynamics of the Southern Hemisphere (SH) annular mode have been extensively do...
متن کاملInterannual Variability and Trends of Extratropical Ozone. Part II: Southern Hemisphere
A principal component analysis (PCA) is applied to the Southern Hemisphere (SH) total column ozone following the method established for analyzing the data in the Northern Hemisphere (NH) in a companion paper. The interannual variability (IAV) of extratropical O3 in the SH is characterized by four main modes, which account for 75% of the total variance. The first two leading modes are approximat...
متن کاملPhase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend
The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Niña, global warming, and the positive phase of annular modes are all associated with a poleward shift of midlatitude jet streams and surface westerlies. To improve understanding...
متن کاملInterannual Variability and Trends of Extratropical Ozone. Part I: Northern Hemisphere
The authors apply principal component analysis (PCA) to the extratropical total column ozone from the combined merged ozone data product and the European Centre for Medium-Range Weather Forecasts assimilated ozone from January 1979 to August 2002. The interannual variability (IAV) of extratropical O3 in the Northern Hemisphere (NH) is characterized by four main modes. Attributable to dominant d...
متن کامل